Scientific References
[1] Th von Woedtke, S. Reuter, K. Masur, and K. D. Weltmann. Plasmas for medicine, sep 2013.

[2] David B. Graves. Low temperature plasma biomedicine: A tutorial review. Physics of Plasmas, 21(8), 2014.

[3] M. Weiss, G. Daeschlein, A. Kramer, M. Burchardt, S. Brucker, D. Wallwiener, and M. B. Stope. Virucide properties of cold atmospheric plasma for future clinical applications. Journal of Medical Virology, 89(6):952–959, 2017.

[4] FAO. FAO, The Future of Food and Agriculture: Trends and Challenges. FAO, Rome, 2017.

[5] Comisión Europea. La comisión europea. Diario Oficial de la Unión Europea, 2019/1702(3):10–12, 2019.

[6] Angela Los. How Does Cold Plasma Enhance Seed Germination and Plant Growth?, 2019.

[7] Paula Bourke, Dana Ziuzina, Daniela Boehm, Patrick J. Cullen, and Kevin Keener. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6):615–626, 2018.

[8] Zhuwen Zhou, Yanfen Huang, Size Yang, and Wei Chen. Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agricultural Sciences, 02(01):23–27, 2011.

[9] Ling Li, Jiafeng Jiang, Jiangang Li, Minchong Shen, Xin He, Hanliang Shao, and Yuanhua Dong. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific Reports, 4(1):1–7, 2014.

[10] Muhammad Abu Bakar Sidik, Zolkafle Buntat, Zainuddin Nawawi, Muhammad Irfan Jambak, Yahya Buntat, and Fatin Nabilah Musa. Effects of Cold Plasma Treatment on the Growth Rate of Corn and Eggplant Plants. Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 17:441–446, 2019.

[11] Jiafeng Jiang, Xin He, Ling Li, Jiangang Li, Hanliang Shao, Qilai Xu, Renhong Ye, and Yuanhua Dong. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Science and Technology, 16(1):54–58, 2014.

[12] Yujuan Li, Tiecheng Wang, Yiran Meng, Guangzhou Qu, Qiuhong Sun, Dongli Liang, and Shibin Hu. Air Atmospheric Dielectric Barrier Discharge Plasma Induced Germination and Growth Enhancement of Wheat Seed. Plasma Chemistry and Plasma Processing, 37(6):1621–1634, 2017.

[13] Agata Los, Dana Ziuzina, Daniela Boehm, Patrick J. Cullen, and Paula Bourke. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Processes and Polymers, 16(4):1–12, 2019.

[14] Yiran Meng, Guangzhou Qu, Tiecheng Wang, Qiuhong Sun, Dongli Liang, and Shibin Hu. Enhancement of Germination and Seedling Growth of Wheat Seed Using Dielectric Barrier Discharge Plasma with Various Gas Sources. Plasma Chemistry and Plasma Processing, 37(4):1105–1119, 2017.

[15] Jana Šírová, Michaela Sedlářová, Jana Piterková, Lenka Luhová, and Marek Petřivalský. The role of nitric oxide in the germination of plant seeds and pollen. Plant Science, 181(5):560–572, 2011.

[16] A. Zahoranová, M. Henselová, D. Hudecová, B. Kaliňáková, D. Kováčik, V. Medvecká, and M. Černák. Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface. Plasma Chemistry and Plasma Processing, 36(2):397–414, 2016.

[17] Tibor Stolárik, Mária Henselová, Michal Martinka, Ondřej Novák, Anna Zahoranová, and Mirko Černák. Effect of Low-Temperature Plasma on the Structure of Seeds, Growth and Metabolism of Endogenous Phytohormones in Pea (Pisum sativum L.). Plasma Chemistry and Plasma Processing, 35(4):659–676, 2015.

[18] Daniela Dobrin, Monica Magureanu, Nicolae Bogdan Mandache, and Maria Daniela Ionita. The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science and Emerging Technologies, 29:255–260, 2015.

[19] Edward Bormashenko, Roman Grynyov, Yelena Bormashenko, and Elyashiv Drori. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Scientific Reports, 2:3–10, 2012.

[20] Mercedes López, Tamara Calvo, Miguel Prieto, Rodolfo Múgica-vidal, Ignacio Muro-fraguas, Fernando Alba-elías, and Avelino Alvarez-ordóñez. A Review on Non-thermal Atmospheric Plasma for Food Preservation : Mode of Action , Determinants of Effectiveness , and Applications. Frontiers in Microbiology, 10(April), 2019.

[21] Padrig B. Flynn, Alessandro Busetti, Ewa Wielogorska, Olivier P. Chevallier, Christopher T. Elliott, Garry Laverty, Sean P. Gorman, William G. Graham, and Brendan F. Gilmore. Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Scientific Reports, 6, may 2016.

[22] Iqbal K Jahid, Noori Han, and Sang-do Ha. Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila bio fi lm on lettuce. Food Research International journal, 55:181–189, 2014.

[23] Hyun Jung Lee, Hyun Pa Song, Heesoo Jung, Wonho Choe, Jun Sang Ham, Jun Heon Lee, and Cheorun Jo. Effect of Atmospheric Pressure Plasma Jet on Inactivation of Listeria monocytogenes , Quality , and Genotoxicity of Cooked Egg White and Yolk. Korean J. Food Sci. An., 32(5):561–570, 2012.

[24] Xing-min Shi, Guan-jun Zhang, Xi-li Wu, Ya-xi Li, Yue Ma, and Xian-jun Shao. Effect of Low-Temperature Plasma on Microorganism Inactivation and Quality of Freshly Squeezed Orange Juice. Trends in Food Science & Technology, 39(7):1591–1597, 2011.

[25] Hyun Pa Song, Binna Kim, Jun Ho Choe, Samooel Jung, Se Youn Moon, Wonho Choe, and Cheorun Jo. Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiology, 26(4):432–436, 2009.

[26] P Muranyi, J Wunderlich, and M Heise. Sterilization efficiency of a cascaded dielectric barrier discharge. Journal of Applied Microbiology, 103:1535–1544, 2007.

[27] Xutao Deng, Jianjun Shi, Michael G Kong, and Senior Member. Physical Mechanisms of Inactivation of Bacillus subtilis Spores Using Cold Atmospheric Plasmas. Journal of Food Science, 34(4):1310–1316, 2006.

[28] D Ziuzina, S Patil, P J Cullen, K M Keener, and P Bourke. Atmospheric cold plasma inactivation of Escherichia coli , Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42:109–116, 2014.

[29] Dinesh D Jayasena, Hyun Joo, Hae In, Sanghoo Park, Kijung Kim, Wonho Choe, and Cheorun Jo. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin : Effects on pathogen inactivation and meat-quality attributes. Food Microbiology, 46:51–57, 2015.

[30] A Fröhling, J Durek, U Schnabel, J Ehlbeck, J Bolling, and O Schlüter. Indirect plasma treatment of fresh pork : Decontamination ef fi ciency and effects on quality attributes. Innovative Food Science and Emerging Technologies, 16:381–390, 2012.

[31] Katrine Sara Rod, Flemming Hansen, Frank Leipold, and Susanne Knøchel. Cold atmospheric pressure plasma treatment of ready-to-eat meat : Inactivation of Listeria innocua and changes in product quality. Food Microbiology, 30(1):233–238, 2012.

[32] Abasalt Hosseinzadeh Colagar, Farshad Sohbatzadeh, Saeed Mirzanejhad, and Azadeh Valinataj Omran. Sterilization of Streptococcus pyogenes by afterglow dielectric barrier discharge using O2 and CO2 working gases. Biochemical Engineering Journal, 51(3):189–193, sep 2010.

[33] Adam D. Yost and Suresh G. Joshi. Atmospheric nonthermal plasma-treated PBS inactivates Escherichia coli by oxidative DNA damage. PLoS ONE, 10(10), oct 2015.

[34] Shawn Tseng, Nina Abramzon, James O. Jackson, and Wei Jen Lin. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Applied Microbiology and Biotechnology, 93(6):2563–2570, mar 2012.

[35] P. Muranyi, J. Wunderlich, and H. C. Langowski. Modification of bacterial structures by a low-temperature gas plasma and influence on packaging material. Journal of Applied Microbiology, 109(6):1875–1885, dec 2010.

[36] Danil Dobrynin, Gregory Fridman, Gary Friedman, and Alexander Fridman. Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11, nov 2009.

[37] Denis Butscher, Daniel Zimmermann, Markus Schuppler, and Philipp Rudolf von Rohr. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control, 60:636–645, feb 2016.

[38] M Laroussi, D A Mendis, and M Rosenberg. Plasma interaction with microbes. New Journal of Physics, 5(10):41–42, 2003.

[39] F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas. Food Control, 21(8):1194–1198, 2010.

[40] Danil Dobrynin, Gary Friedman, Alexander Fridman, and Andrey Starikovskiy. Inactivation of bacteria using dc corona discharge: Role of ions and humidity. New Journal of Physics, 13, oct 2011.

[41] Suresh G. Joshi, Moogega Cooper, Adam Yost, Michelle Paff, Utku K. Ercan, Gregory Fridman, Gary Friedman, Alexander Fridman, and Ari D. Brooks. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy, 55(3):1053–1062, mar 2011.

[42] P. J. Pomposiello and B Demple. Global Adjustment of Microbial Physiology During Free Radical Stress. Adv. Microb. Physiol, 46:319–341, 2002.

[43] Mahendra Pal, Fikru Gizaw, Firehiwot Abera, Pankaj Kumar Shukla, and R A Hazarika. Mycotoxins : A Growing Concern to Human and Animal Health. BEVERAGE & FOOD WORLD, 42(5), 2015.

[44] European Commission. Mycotoxin Decontamination Efficacy of Atmospheric Pressure Air Plasma, 2019.

[45] Wayne L. Bryden. Mycotoxins in the food chain: Human health implications. Asia Pacific Journal of Clinical Nutrition, 16(SUPPL.1):95–101, 2007.

[46] R. Russell M. Paterson and Nelson Lima. How will climate change affect mycotoxins in food? Food Research International, 43(7):1902–1914, 2010.

[47] L Goldblatt. Aflatoxin : Scientific Background, Control, and Implications. 1969.

[48] Mohsen Gavahian and P J Cullen. Cold Plasma as an Emerging Technique for Mycotoxin-Free Food : Efficacy , Mechanisms , and Trends. Food Reviews International, 0(0):1–22, 2019.

[49] Joo Bong Park, Kosuke Takatori, Yoshiko Sugita-konishi, Ik-hwi Kim, and Mi-hee Lee. Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surface & Coating Technology, 201:5733–5737, 2007.

[50] Paloma Patricia Casas-Junco, Josué Raymundo Solís-Pacheco, Juan Arturo Ragazzo-Sánchez, Blanca Rosa Aguilar-Uscanga, Pedro Ulises Bautista-Rosales, and Montserrat Calderón-Santoyo. Cold Plasma Treatment as an Alternative for Ochratoxin a Detoxification and Inhibition of Mycotoxigenic Fungi in Roasted Coffee. Toxins, 11(6), 2019.

[51] N. N. Misra, Barun Yadav, M. S. Roopesh, and Cheorun Jo. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18(1):106–120, 2019.

[52] Aycan Cinar and Elif Onbasi. Mycotoxins: The Hidden Danger in Food, 2019.

[53] Ewa Wielogorska, Yusuf Ahmed, Julie Meneely, William G. Graham, Christopher T. Elliott, and Brendan F. Gilmore. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chemistry, 301(July):125281, 2019.

[54] Kitiya Suhem, Narumol Matan, Mudtorlep Nisoa, and Nirundorn Matan. International Journal of Food Microbiology Inhibition of Aspergillus fl avus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. International Journal of Food Microbiology, 161(2):107–111, 2013.

[55] J Šimončicová, B Kaliňáková, D Kováčik, V Medvecká, B Lakatoš, S Kryštofová, L Hoppanová, Palušková V, D Hudecová, P Ďurina, and A Zahoranová. Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Applied Microbiology and Biotechnology, 102(15), 2018.

[56] S. A. Ouf, A. H. Basher, and A. A. H Mohamed. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus Niger Contaminating Date Palm Fruits. J. Sci. Food Agric, 95(15):3204–3210, 2015.

[57] Beyhan Gunaydin, Mehmet Mutlu, and Ismail Hakki. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fl uidized bed plasma reactor. International Journal of Food Microbiology, 216:50–59, 2016.

[58] Yamuna Devi, Rohit Thirumdas, C Sarangapani, R R Deshmukh, and U S Annapure. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77:187–191, 2017.

[59] Alternaria Species, Lars Bosch, Katharina Pfohl, Georg Avramidis, Stephan Wieneke, Wolfgang Viöl, and Petr Karlovsky. Plasma-Based Degradation of Mycotoxins Produced. Toxines (Basel), 9(3):1–12, 2017.

[60] Pavel Kříž, Bartoš Petr, Havelka Zbyněk, Kadlec Jaromír, Olšan Pavel, Špatenka Petr, and Dienstbier Miroslav. Influence of Plasma Treatment in Open Air on Mycotoxin Content and Grain Nutriments. Plasma Medicine, 5(2-4):145–158, 2015.

[61] C. R. Ren, J. X. Xiao, S. Q. Wang, W. L. Jiang, Y. Zhang, and Z. Liu. Effect of Peanut Components on the Degradation of Aflatoxin B_1 Treated by Atmospheric Pressure Plasma. Plasma. Sci. Technol. Cereal. Oils Foods, 2(7), 2017.

[62] Akikazu Sakudo, Yoichi Toyokawa, Tatsuya Misawa, and Yuichiro Imanishi. Degradation and detoxi fi cation of a fl atoxin B 1 using nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control, 73:619–626, 2016.

[63] D. Spadaro, A. Garibaldi, D. Prelle, A.; Vallauri, I. Siciliano, M. C. Cavallero, and M. L. Gullino. Efficacy of Cold Plasma in the Reduction of Aflatoxins on Hazelnuts. Journal of Plant Pathology, 97(23), 2015.

[64] L. Klarhöfer, W. Viöl, and W. Maus-Friedrichs. Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung, 64(3):331–336, 2010.

[65] Hu Shi, Klein Ileleji, Richard L Stroshine, Kevin Keener, and Jeanette L Jensen. Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10(6):1042–152, 2017.

[66] Elham Galin Abbasian, Arash Chaichi Nosrati, and Mahmood Ghoranneviss. Study of the effect of plasma jet on Fusarium isolates with ability to produce DON toxins. Clinical Research and Methods, 15(9):204–207, 2017.

[67] Ilenia Siciliano, Davide Spadaro, Ambra Prelle, Dario Vallauri, Maria Chiara Cavallero, Angelo Garibaldi, and Maria Lodovica Gullino. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins (Basel), 8(5):125, 2016.

[68] Mounir Laroussi. Plasma Medicine: A Brief Introduction. Plasma, 1(1):47–60, feb 2018.

[69] Mounir Laroussi. Sterilization of Contamined Matter with Atmospheric Pressure Plasma. IEEE TRANSACTIONS ON PLASMA SCIENCE, 24(3), 1996.

[70] A. B. Shekhter, R. K. Kabisov, A. V. Pekshev, N. P. Kozlov, and Yu L. Perov. Experimental and clinical validation of plasmadynamic therapy of wounds with nitric oxide. Bulletin of Experimental Biology and Medicine, 126(8):829–834, 1998.

[71] E. Stoffels, A. J. Flikweert, W. W. Stoffels, and G. M W Kroesen. Plasma needle: A non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Science and Technology, 11(4):383–388, 2002.

[72] A. Fridman and G Friedman. Plasma Medicine. Wiley: New York, New York, USA, 2013.

[73] USA. Food and Drug Association (FDA).

[74] TrialSite News. First-Ever Use of Cold Plasma Technology in Clinical Trial to Remove Microscopic Cancer Tumors, 2019.

[75] Bette Nijboer. Cold Atmospheric Plasma Fighting Infections, 2019.

[76] CDC. Antibiotic resistance threats in the United States. Technical report, U.S. Department of Health and Human Services, Atlanta, 2019.

[77] Tetsuji Shimizu, V. Lachner, and Julia Luise Zimmermann. Surface microdischarge plasma for disinfection. Plasma Medicine, 7(2):175–185, 2017.

[78] Martin C. Robson, Rudolph J. Mannari, Paul D. Smith, and Wyatt G. Payne. Maintenance of wound bacterial balance. American Journal of Surgery, 178(5):399–402, 1999.

[79] J. Heinlin, G. Isbary, W. Stolz, G. Morfill, M. Landthaler, T. Shimizu, B. Steffes, T. Nosenko, J. L. Zimmermann, and S. Karrer. Plasma applications in medicine with a special focus on dermatology. Journal of the European Academy of Dermatology and Venereology, 25(1):1–11, 2011.

[80] Tetsuji Shimizu, Bernd Steffes, René Pompl, Ferdinand Jamitzky, Wolfram Bunk, Katrin Ramrath, Matthias Georgi, Wilhelm Stolz, Hans Ulrich Schmidt, Takuya Urayama, Shuitsu Fujii, and Gregor Eugen Morfill. Characterization of microwave plasma torch for decontamination. Plasma Processes and Polymers, 5(6):577–582, 2008.

[81] J. Jeon, T. G. Klaempfl, J. L. Zimmermann, G. E. Morfill, and T. Shimizu. Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities. New Journal of Physics, 16, 2014.

[82] Mounir Laroussi. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects. IEEE Transactions on Plasma Science, 30(4 I):1409–1415, 2002.

[83] Tobias G. Klämpfl, Georg Isbary, Tetsuji Shimizu, Yang Fang Li, Julia L. Zimmermann, Wilhelm Stolz, Jürgen Schlegel, Gregor E. Morfill, and Hans Ulrich Schmidt. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Applied and Environmental Microbiology, 78(15):5077–5082, 2012.

[84] M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. Van Dijk, and J. L. Zimmermann. Plasma medicine: An introductory review. New Journal of Physics, 11, 2009.

[85] G. Isbary, G. Morfill, H. U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J. L. Zimmermann, R. Pompl, and W. Stolz. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. British Journal of Dermatology, 163(1):78–82, 2010.

[86] G. Isbary, J. Heinlin, T. Shimizu, J. L. Zimmermann, G. Morfill, H. U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler, and W. Stolz. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: Results of a randomized controlled trial. British Journal of Dermatology, 167(2):404–410, 2012.

[87] F. Brehmer, H. A. Haenssle, G. Daeschlein, R. Ahmed, S. Pfeiffer, A. Görlitz, D. Simon, M. P. Schön, D. Wandke, and S. Emmert. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): Results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). Journal of the European Academy of Dermatology and Venereology, 29(1):148–155, 2015.

[88] Karolina A. Lis, Corinna Kehrenberg, Annika Boulaaba, Maren von Köckritz-Blickwede, Sylvia Binder, Yangfang Li, Julia L. Zimmermann, Yvonne Pfeifer, and Birte Ahlfeld. Inactivation of multidrug-resistant pathogens and Yersinia enterocolitica with cold atmospheric-pressure plasma on stainless-steel surfaces. International Journal of Antimicrobial Agents, 52(6):811–818, 2018.

[89] Krishna Priya Arjunan, Gary Friedman, Alexander Fridman, and Alisa Morss Clyne. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. Journal of The Royal Society Interface, 9(66):147–157, jan 2012.

[90] S. Kubinova, K. Zaviskova, L. Uherkova, V. Zablotskii, O. Churpita, O. Lunov, and A. Dejneka. Non-thermal air plasma promotes the healing of acute skin wounds in rats. Scientific Reports, 7, mar 2017.

[91] Kuang Yao Cheng, Zhi Hua Lin, Yu Pin Cheng, Hsien Yi Chiu, Nai Lun Yeh, Tung Kung Wu, and Jong Shinn Wu. Wound Healing in Streptozotocin-Induced Diabetic Rats Using Atmospheric-Pressure Argon Plasma Jet. Scientific Reports, 8(1), dec 2018.

[92] Sara Fathollah, Shahriar Mirpour, Parvin Mansouri, Ahmad Reza Dehpour, Mahmood Ghoranneviss, Nastaran Rahimi, Zahra Safaie Naraghi, Reza Chalangari, and Katalin Martits Chalangari. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Scientific Reports, 6, feb 2016.

[93] Mario Betancourt-Ángeles, Rosendo Peña-Eguiluz, Régulo López-Callejas, Nicasio Alberto Domínguez-Cadena, Antonio Mercado-Cabrera, Jorge Muñoz-Infante, Benjamín Gonzalo Rodríguez-Méndez, Raúl Valencia-Alvarado, and José Alberto Moreno-Tapia. Treatment in the healing of burns with a cold plasma source. International journal of burns and trauma, 7(7):142–146, 2017.

[94] Constance Duchesne, Sébastien Banzet, Jean‐Jacques Lataillade, Antoine Rousseau, and Nadira Frescaline. Cold atmospheric plasma modulates endothelial nitric oxide synthase signalling and enhances burn wound neovascularisation. The Journal of Pathology, (July):368–380, 2019.

[95] Vipin Arora. Cold Atmospheric Plasma (CAP) in Dentistry. Dentistry, 04(01):1–5, 2013.

[96] Arpita Sarkar, Dipankar Pal, and Subir Sarkar. Cold atmospheric plasma-future of dentistry. Journal of Dental and Medical Sciences, 17(8):15–20, 2018.

[97] Hyun Woo Lee, Seoul Hee Nam, Abdel Aleam H. Mohamed, Gyoo Cheon Kim, and Jae Koo Lee. Atmospheric pressure plasma jet composed of three electrodes: Application to tooth bleaching. Plasma Processes and Polymers, 7(3-4):274–280, 2010.

[98] Clotilde Hoffmann, Carlos Berganza, and John Zhang. Cold Atmospheric Plasma: Methods of production and application in dentistry and oncology. Medical Gas Research, 3(1):1–15, 2013.

[99] Hiromitsu Yamazaki, Tomoko Ohshima, Yuji Tsubota, Hiroyasu Yamaguchi, Jayanetti Asiri Jayawardena, and Yasushi Nishimura. Microbicidal activities of low frequency atmospheric pressure plasma jets on oral pathogens. Dental Materials Journal, 30(3):384–391, 2011.

[100] R. E J Sladek, Eva Stoffels, Rick Walraven, P. J A Tielbeek, and Ruben A. Koolhoven. Plasma treatment of dental cavities: A feasibility study. IEEE Transactions on Plasma Science, 32(4 II):1540–1543, 2004.

[101] John Goree, Bin Liu, David Drake, and Eva Stoffels. Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Transactions on Plasma Science, 34(4 II):1317–1324, 2006.

[102] M. Haapasalo and D. Ørstavik. In vitro Infection and Disinfection of Dentinal Tubules. Journal of Dental Research, 66(8):1375–1379, 1987.

[103] Jacques Ferlay, Rajesh Soerjomataram, Isabelle Dikshit, Sultan Eser, Colin Mathers, Marise Rebelo, Donald Maxwell Parkin, David Forman Forman, and Freddie Bray. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136:E359–E386, 2014.

[104] Antoine Dubuc, Paul Monsarrat, François Virard, Nofel Merbahi, Jean Philippe Sarrette, Sara Laurencin-Dalicieux, and Sarah Cousty. Use of cold-atmospheric plasma in oncology: a concise systematic review. Therapeutic Advances in Medical Oncology, 10:1–12, 2018.

[105] Sun Ja Kim and T. H. Chung. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Scientific Reports, 6(February):1–14, 2016.

[106] Jonas Van Der Paal, Claudia Verheyen, Erik C. Neyts, and Annemie Bogaerts. Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity. Scientific Reports, 7(August 2016):1–11, 2017.

[107] Rafael Guerrero-Preston, Takenori Ogawa, Mamoru Uemura, Gary Shumulinsky, Blanca L. Valle, Francesca Pirini, Rajani Ravi, David Sidransky, Michael Keidar, and Barry Trink. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. International Journal of Molecular Medicine, 34(4):941–946, 2014.

[108] Sachiko Iseki, Moemi Nakamura, Hiromasa Tanaka, Hiroki Kondo, Hiroaki Kajiyama, Hiroyuki Kano, Fumitaka Kikkawa, and Masaru Hori. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Applied Physics Letter, 100:113702–1 – 113702–4, 2012.

[109] Parker Babington, Kenan Rajjoub, Jerome Canady, Alan Siu, Michael Keidar, and Jonathan H. Sherman. Use of cold atmospheric plasma in the treatment of cancer. Biointerphases, 10(2):029403, 2015.

[110] Edward A. Ratovitski, Xiaoqian Cheng, Dayun Yan, Jonathan H. Sherman, Jerome Canady, Barry Trink, and Michael Keidar. Anti-cancer therapies of 21st century: Novel approach to treat human cancers using cold atmospheric plasma. Plasma Processes and Polymers, 11(12):1128–1137, 2014.

[111] Dayun Yan, Annie Talbot, Niki Nourmohammadi, Jonathan H. Sherman, Xiaoqian Cheng, and Michael Keidar. Toward understanding the selective anticancer capacity of cold atmospheric plasma—A model based on aquaporins (Review). Biointerphases, 10(4):040801, 2015.

[112] Fumi Utsumi, Hiroaki Kajiyama, Kae Nakamura, Hiromasa Tanaka, Masaaki Mizuno, Kenji Ishikawa, Hiroki Kondo, Hiroyuki Kano, Masaru Hori, and Fumitaka Kikkawa. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS ONE, 8(12):1–10, 2013.

[113] Marc Vandamme, Eric Robert, Sabrina Pesnel, Emerson Barbosa, Sébastien Dozias, Julien Sobilo, Stéphanie Lerondel, Alain Le Pape, and Jean Michel Pouvesle. Antitumor effect of plasma treatment on u87 glioma xenografts: Preliminary results. Plasma Processes and Polymers, 7(3-4):264–273, 2010.

[114] M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi, R. Guerrero-Preston, and B. Trink. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer, 105(9):1295–1301, 2011.

[115] Jae Young Kim, John Ballato, Paul Foy, Thomas Hawkins, Yanzhang Wei, Jinhua Li, and Sung O. Kim. Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosensors and Bioelectronics, 28(1):333–338, 2011.

[116] Yuan Liu, Sheng Tan, Hao Zhang, Xiangjun Kong, Lili Ding, Jie Shen, Yan Lan, Cheng Cheng, Tao Zhu, and Weidong Xia. Selective effects of non-thermal atmospheric plasma on triple-negative breast normal and carcinoma cells through different cell signaling pathways. Scientific Reports, 7(1), dec 2017.

[117] Georg Bauer, Dominika Sersenová, David B. Graves, and Zdenko Machala. Dynamics of Singlet Oxygen-Triggered, RONS-Based Apoptosis Induction after Treatment of Tumor Cells with Cold Atmospheric Plasma or Plasma-Activated Medium. Scientific Reports, 9(1), dec 2019.

[118] Dayun Yan, Wenjun Xu, Xiaoliang Yao, Li Lin, Jonathan H. Sherman, and Michael Keidar. The Cell Activation Phenomena in the Cold Atmospheric Plasma Cancer Treatment. Scientific Reports, 8(1), dec 2018.

[119] Hendrik Naujokat, Sönke Harder, Lara Yasemin Schulz, Jörg Wiltfang, Christian Flörke, and Yahya Açil. Surface conditioning with cold argon plasma and its effect on the osseointegration of dental implants in miniature pigs. Journal of Cranio-Maxillofacial Surgery, 47(3):484–490, 2019.

[120] Kathrin Duske, Ina Koban, Eckhard Kindel, Karsten Schröder, Barbara Nebe, Birte Holtfreter, Lukasz Jablonowski, Klaus D. Weltmann, and Thomas Kocher. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. Journal of Clinical Periodontology, 39(4):400–407, 2012.

[121] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran, and B. D. Boyan. High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research – Part A, 74(1):49–58, 2005.

[122] Mounir Laroussi. Low-temperature plasmas for medicine? IEEE Transactions on Plasma Science, 37(6 PART 1):714–725, 2009.

[123] Shasha Zhao, Zilan Xiong, Xiang Mao, Dandan Meng, Qian Lei, Yin Li, Pengyi Deng, Mingjie Chen, Min Tu, Xinpei Lu, Guangxiao Yang, and Guangyuan He. Atmospheric Pressure Room Temperature Plasma Jets Facilitate Oxidative and Nitrative Stress and Lead to Endoplasmic Reticulum Stress Dependent Apoptosis in HepG2 Cells. PLoS ONE, 8(8):1–14, 2013.

[124] M. Laroussi, X. Lu, and M. Keidar. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. Journal of Applied Physics, 122(2), 2017.

[125] X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 630(April):1–84, 2016.

[126] David B. Graves. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics, 45(26), 2012.

[127] Gregory Fridman, Gary Friedman, Alexander Gutsol, Anatoly B. Shekhter, Victor N. Vasilets, and Alexander Fridman. Applied plasma medicine. Plasma Processes and Polymers, 5(6):503–533, 2008.

[128] Steven J. Forrester, Daniel S. Kikuchi, Marina S. Hernandes, Qian Xu, and Kathy K. Griendling. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research, 122(6):877–902, 2018.

[129] Cell Division and Cancer. Scitable by Nature Education.

[130] Xu Yan, Fei Zou, Shasha Zhao, Xinpei Lu, Guangyuan He, Zilan Xiong, Qing Xiong, Qiangqiang Zhao, Pengyi Deng, Jianguo Huang, and Guangxiao Yang. On the mechanism of plasma inducing cell apoptosis. IEEE Transactions on Plasma Science, 38(9 PART 2):2451–2457, 2010.

[131] Musarat Ishaq, Margaret Evans, and Kostya Ostrikov. Effect of atmospheric gas plasmas on cancer cell signaling. International Journal of Cancer, 134(7):1517–1528, 2014.

[132] Musarat Ishaq, Shailesh Kumar, Hilal Varinli, Zhao Jun Han, Amanda E. Rider, Margaret D.M. Evans, Anthony B. Murphy, and Kostya Ostrikov. Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Molecular Biology of the Cell, 25(9):1523–1531, 2014.

[133] Endre J. Szili, James W. Bradley, and Robert D. Short. A ’tissue model’ to study the plasma delivery of reactive oxygen species. Journal of Physics D: Applied Physics, 47(15), 2014.

[134] Jun Seok Oh, Endre J. Szili, Nishtha Gaur, Sung Ha Hong, Hiroshi Furuta, Hirofumi Kurita, Akira Mizuno, Akimitsu Hatta, and Robert D. Short. How to assess the plasma delivery of RONS into tissue fluid and tissue. Journal of Physics D: Applied Physics, 49(30):304005, 2016.

[135] Sung Ha Hong, Endre J. Szili, A. Toby A Jenkins, and Robert D. Short. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. Journal of Physics D: Applied Physics, 47(36), 2014.

[136] J. Duan, X. Lu, and G. He. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Physics of Plasmas, 24(7), 2017.

[137] Mounir Laroussi. From killing bacteria to destroying cancer cells: 20 years of plasma medicine. Plasma Processes and Polymers, 11(12):1138–1141, 2014.

[138] Zoltán Károly, Gábor Kalácska, Jacob Sukumaran, Dieter Fauconnier, Ádám Kalácska, Miklós Mohai, and Szilvia Klébert. Effect of atmospheric cold plasma treatment on the adhesion and tribological properties of polyamide 66 and poly(tetrafluoroethylene). Materials, 12(4), 2019.

[139] Luigi Carrino, Giovanni Moroni, and Wilma Polini. Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. Journal of Materials Processing Technology, 121(2-3):373–382, 2002.

[140] Won Seok Jeong, Jae Sung Kwon, Eun Ha Choi, and Kwang Mahn Kim. The Effects of Non-Thermal Atmospheric Pressure Plasma treated Titanium Surface on Behaviors of Oral Soft Tissue Cells. Scientific Reports, 8(1):1–13, 2018.

[141] Muzammil Iqbal, Duy Khoe Dinh, Qasim Abbas, Muhammad Imran, Harse Sattar, and Aqrab Ul Ahmad. Controlled Surface Wettability by Plasma Polymer Surface Modification. Surfaces, 2(2):349–371, 2019.

[142] K. G. Kostov, T. M.C. Nishime, A. H.R. Castro, A. Toth, and L. R.O. Hein. Surface modification of polymeric materials by cold atmospheric plasma jet. Applied Surface Science, 314:367–375, 2014.